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1. fiF 

Richard F Vosst and John Clarke 
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Received 12 August 1975, in final form 3 November 1975 

Abstract. We show that the spectrum of intensity fluctuations of monochromatic light 
scattered by a suspension of particles undergoing Brownian motion contains a contribution, 
S,(f l ,  due to fluctuations in the number of illuminated particles in addition to the 
interference terms. Limiting forms of &(f) are given for a regular three-dimensional 
illuminated volume 4. For an 4 with sharp boundaries SN(n'AnoD1'2/2~3'2f3'2 for 
f >> D/lZ, where 1 is the smallest dimension of Q, D is the diffusion constant, no i s  the 
particle number density, and A is the surface area through which particles may enter or 
leave Q. We have measured the intensity fluctuation spectra of laser light scattered by 
suspensions of polystyrene spheres in water from 5 x Hz to 5 x IO3 Hz. The spectra 
clearly show the usual homodyne Lorentdan superimposed upon S,(f). The effects of 
varying D, no, Q, and detector area on the spectra were in excellent agreement with theory. 
The measured f 3'2 limit of SN(f) together with D (from the Lorentzian halfwidth) and our 
known Qenabled us to determine a value for no. SN(f) was also measured with a white light 
source. 

t w u c t i o n  

Ibe mtensity fluctuations of monochromatic coherent light scattered by a suspension of 
&pendent particles undergoing Brownian motion have been used to measure the 
&ion constant, D, of the particles (see Cummins and Swinney 1970 for an extensive 
review). similar methods have also been used to gain information about the motion Of 
matile organisms (Schaefer et a1 1974). Two closely related experimental techniques 
havebeen developed, namely heterodyne and homodyne detection. In the heterodyne 
e'??hent, fist performed by Cummins et a1 (1964), light scattered by the particles is 
adwith light of constant phase from the same source, which acts as a local oscillator. 
Interference between the constant phase component and the light scattered by each 
&pendent particle gives rise to intensity fluctuations. The heterodyne spectrum is, 
therefore, Proportional to (N), the average number of illuminated particles. In the 

experiment, first performed by Ford and Benedek (1963, only light 
*Ied from the particles is detected. The intensity fluctuations arise from interfer- 
encebeheen the light scattered by pairs of particles: as one particle moves relative to 
b'( the phase difference of their electric fields at the detector varies. The 
NZ 'On is thus proportional to the number of pairs of illuminated particles, 

'Resot address: IBM Laboratories, Yorktown Heights, NY 10598, USA. 
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Both of these interference effects depend on the coherent nature of the incident 
light. The heterodyne and homodyne experiments may be considered as an elastic 
scattering of light from wavevector k to k’ by n,, a density fluctuatior, of wave,+- 
g= k’- k. The autocorrelation function for the intensity then depends on fie average 
manner in which nK decays in time: For independent particles undergoing B~~~ 
motion (SnK(t))= (6n~(o)> exp(-DK2t). The fluCtUatiOns are thus mr&ted over a 
time rcz1 /DK2.  By measuring rc or the shape of the s p e m ,  s,Y)~ 
~~/[1+(2mf)~], one is able to determine D. 

More recently, Schaefer and Berne (1 972) studied suspensions of polystyrene 
spheres in water when the average number of particles, (N), in the illuminated 
4, was very small. In this limit, the relative fluctuations in the n u b e r  of 
become significant, and introduce additional intensity fluctuations in the scattered light. 
These additional fluctuations are not an interference effect but arise becaw the 
intensity of the scattered light is sensitive to the number of particles in 4. ~~~b~ 
fluctuations have also been observed by the fluorescence of individual particles (Ebn 
and Magde 1974, Magde et a1 1974). The correlation time for the numberflumtiom 
is of the order Iz/D, where 1 is the smallest dimension of ai, and is usually much greater 
than 1/DK2. Schaefer and Berne showed that the number fluctuations may be 
observed as a slowly varying excess background in the homodyne autocorrelation 
function. They were able to subtract out the contribution of the number fluctuations, 
and thus recover the usual homodyne autocorrelation function. The statistics of the 
non-Gaussian scattered light were discussed by Schaefer and Pusey (1972) and by 
Pusey er al (1974). From these measurements, one is able to deduce a value for the 
particle number density, no. 

In this paper we present an alternative approach to the problem. First, we derive the 
intensity fluctuation spectrum for the scattered light. In addition to the homodyneand 
heterodyne terms, the spectrum contains a number fluctuation term, &(n. ’lk 
calculation of the spectrum is independent of the statistics. In the high frequencylimit 
(f >> D/12) for an illuminated volume with surface area A and with sharp boundari6we 
find SN(f> = n0D”2A/27r f . Therefore, a measurement of the high frequencylimit 
of SN(n allows one to determine no if A and D are known. 

Second, we describe a series of homodyne experiments in which laser light wa 
scattered by a suspension of polystyrene spheres in water. The spectra Of the intensl@ 
fluctuations of the scattered light were measured from 5 x “le 
spectra show clearly both the homodyne Lorentzian and S,(f). In most cases, they 
spectra can easily be separated. Spectra were also obtained with a white lightsourc;e:m 
this case, the interference Lorentzian was absent, and only S,(n was obsefled. ,% 
technique provides an extremely sensitive method for detecting number flucmaDons’ 
The fluctuations were readily observable when (N) = 5.5 x lo4 for an unstabilUedlaser 
and (N> = 8 X lo6 for an incandescent bulb. The observed spectra are in exceued 
quantitative agreement with the theoretical predictions. To our knowledge$ these of observations represent the first detailed experimental confirmation of the 
number fluctuations in diffusive systems by a direct measurement of the 

3 / 2  3 / 2  

Hz to 5 X lo3 

2. Theory 

Light of wavevector k illuminates a small subvolume Qi of a cell of 
containing a suspension of M = noQ particles (where M >> 1) undergoing 

volume fl 
Brad 
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we assume that each of the particles is independent, and that is large enough 
that we may neglect effects due to its boundaries. Each of the illuminated particles 

the light elastically with a phase that varies in time due to the motion of the scatters we are interested in the intensity fluctuation spectrum for light scattered with 
mvev&or k‘intoa detector Of area Adet. Initially, we assume that the light is coherent 
over be area of the detector. The electric field is of the form 

M 

E(t)  = EO exp(-ioot) + l.3 1 B(rj)  exp(-iwot) exp(iK. rj). 
j = l  

Gkbeconstant phase heterodyne component, and K =  k’- k is the scattering vector. 
E(?)= 1 ifri is in ai, while B ( q )  = 0 otherwise. P2 is proportional to the intensity of the 
wightscattered by a single particle as measured by the detector. The intensity of the 
scattered light is I ( t )  = E ( t )  . E*(t). 

We assume further that (Kl>> 1-’, where I is the smallest dimension of $2,. This 
-phon is equivalent to setting BK = 0, where 

Bq =(27r)-’” I, B(r)  exp(iq . r) d3r. 

%positive frequency spectrum of the intensity fluctuations can then be calculated in a 
strtdigbtforward way: this calculation is sketched in the Appendix. For a homodyne 
experiment for which Eo+ 0, the relative spectrum is 

1 is the average intensity, and (N) = n&. The first term on the right-hand side of 
quation (2) is the homodyne Lorentzian (Cummins and Swinney 1970). &(f) arises 
f”e number fluctuations (van der Ziel 1954, see also van Vliet and Fasset 1965 fo:. 
amprehensive review). 

whereas the homodyne Lorentzian depends on the coherent nature of the light, 
s,cn,whichisindependent of K, does not depend on coherence but rather on the shape 
Of4. Except for a few special cases, it is impossible to give an analytic expression for 
yfl. Itis, however, possible to determine its general behaviour. For a regular volume 
*di”ions * .  II 2 i2 3 13, there are three characteristic frequencies, fi = D / d ; ,  that 
hdethe  spectrum into four regions: 

sdfj CC constant for f<< f 1, 

sN(f)oc f 3/2 for f >> f3. 
Ihe cbaraaeristic frequencies correspond to the times rj required for a particle to 
GaosSni in the differentdirections: f;’ a rj a l;/D. At high enough frequencies 
(f”f3’mcIes do not have enou& time to diffuse across Ri in any direction, and the 
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flumations are insensitive to the exact shape of ai. Changes in the numberofp* 
in Q then arise only from local one-dimensional diffusion across each SUrfaOe element 
Since each surface element is independent, SN(~) is Proportional to A, the toMS- 
area through which partides may enter or leave $1 

~ ’ ( x )  is the shape of the boundary of ai in a direction normal to the surface. 8; is the 
one-dimensional spatial Fourier transform of B’(x). For a sharp boundary, qx)=] 
for x s 0 and B’(x) = 0 otherwise. Thus IBhI’ = 1/277q2 and 

The f 3/2 behaviour is therefore a consequence of particle flow aaos a sharp 
boundary. If, instead, the boundary has a finite width, w (for example, B ‘ ( ~ ) =  1 for 

x G 0 and B’(x) = e-”” for x > O), we find 

sdf) noDA/wf2, for f >> D/nw2. (7) 
The constant of proportionality depends on the explicit shape of the boundary. 

Although we initially assumed that the scattered light was coherent over the areaof 
the detector, Adet, this assumption is usually not valid experimentally. In most casesthe 
coherence area at the detector, Amh, is less than A,,,. Cummins and Swinney (1970) 
showthatA,,==A2R2/A‘, whereA is thewavelengthof thelight, R isthedistancefrom 
0, to the detector, and A’ is the apparent area of ai as seen by the detector. A0 
additional factor Acoh/Adet is introduced into the relative spectrum of the interference 
terms. Since each Acoh may be considered as fluctuating independently, the relative 
spectrum is reduced by the number of these independent areas AdeJAmh. Stdf), 
however, is unaffected since it is not an interference effect. The relative intensity 
spectrum then becomes 

The position of the halfwidth of the Lorentzian, f l  f 2  = D K ~ / ~ ,  allows one to determine 
the diffusion constant, D. The low frequency limit of the Lorentzian, 2A,dAdetDFZ7 
’&h/?Tfi/ZAdet, then allows one to determine AWh if Adet is known. TheLorenmma 
expected to be on top of a ‘background’ spectrum due to number fluctuations. For small 
enough ai or no, the number fluctuations may dominate the Lorenban. The ~@ 
frequency limit of the relative number fluctuations from equation (6) 

allows one to determine no if D, A and ai are known. 

3. Experiment 

diametfl 
d b P  In OUT experiment, light from a helium-neon laser (A = 6328 A) with a 

of 1.7 mm passed through a small aperture of diameter 0.45 mm, and was foc,Fvg 
microscope objective lens on to a thin closed cell containing a suspension Of 
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em distilled water. Light scattered through an angle 8 passed through an 
eofxea Adet at a distance R from the cell and was incident on a photomultiplier 

behind the aperture. The cell windows were carefully cleaned to minimize stray 
M~ that would generate a heterodyne component. We estimate that the heterodyne 
m i t i o n  to the Lorentzian was at most 5%. The photomultiplier output was 

digitized at a rate fo (points s-'), and interfaced to a PDP-11 computer. The 
used a fast Fourier transform algorithm to measure the fluctuation spec- 

hbe a g e  f0/1024 to fd2. By taking successive runs with different values of fo, we 
were able to determine the spectrum from 5 X Hz to 5x lo3 Hz. The high 
frequency limit was set by the digitizing electronics while the low frequency limit was set 
by he experimenters' patience, and possible settling effects of the particles. Each 
-was averaged over at least 30 times the longest period. Thus, for example, the 

Hz was about 
17 h. 

arrangement of passing the laser light through an aperture and focusing it on to 
the sample cell produced an illuminated cylindrical volume, $, of length Io = 1-5 mm 
with sharp boundaries and illumination uniform to within 10%. The diameter of the 
cylinder d could be varied by changing the beam focus. The minimum beam diameter 
was 10i2 pn. Since the particles could not cross the ends of the cylinder, we expect 
theshape of the number fluctuation spectrum, SN(f), to be given by equation (4) with 
f1+0,andf2=f3=D/~d2. Thus, SN(f) should be proportional tof3l2 forfa:D/rd*, 
and flatten as f is  lowered below D/Trd2. From equation (9) for a cylindrical ai the high 
frequency limit of the number fluctuation contribution is 

apemn 

taken to obtain a spectrum whose lowest frequency was 5 x 

Figure 1 shows SI(f)/f2 for a homodyne experiment on spheres of radius r, = 630 A 
6th 0=50°, d=lOp,m, R =4cm, and no==5x10" ~ m - ~ .  The value of no was 

f (Hz)  

FbWe 1. Effect of changing Adet on S , ( f ) /~*  for light scattered from a suspension of 
PolYstyrene spheres with ro = 630 A, e = 50", d = 10 pn, R = 4 cm and no 1 5  X 10" 
A, 0.009 an2; B, Adet = 0-7 an2. 
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estimated from information supplied by the manufacturert of the plystyrene spheres 
and ow known dilution. Because of settling of the particles and evaporation 
solvent, the value of no is accurate only to within a factor of 2. h~ figure 1 (curveA), 
A ~ ~ ~ =  0.009 cm', and the spectrum is the usual homodyne Loren~m.  F~~~ the 
position of the halfwidth,flI2 = DK2/v,  we may measure D. Here K = 4m sh(e'/2yk 
where n is the index of refraction of the solvent, A is the vacuum wavelengthofthefi@\ 
a d  8' is the angle through which the light is scattered in the suspension. using sneps 
law to correct for refraction at the Water-@aSS-air interface, we find that ,3=51p 
corresponds to 8' = 37.2" inside the cell. Using the value of flI2 = 85 HZfiom figme I 
( m e  A), we find D = 4.2 X lo-' cm2 s-l. This is in reasonable agreement 
value of D = 3.73 x cmz s-' calculated from the Einstein-Stokes relation  i in stein 
1956) D = k,T/6m7ro, at room temperature. The major error in the me%WementafD 
probably arose from the uncertainty in our estimate of 8. 

In figure 1 (curve B), Adet was increased by a factor of 77 to 0.7cm'. 'Tbeim 
frequency limit of the Lmentzian was reduced by a factor of 65, demonstrating& 
effect of Acoh/Adet in determining the absolute magnitude of the homodyne interfer- 
ence spectrum. From the low frequency limit, we find 2A,JAdc,DK2= 
1.7 x cm2 at the aperture. The empmd 
formula A,,,==A2R2/A' yields a value of 7.0X cm'. (A' was corrected for the 
effect of the water-glass-air interface.) The number fluctuation contribution is 
unaffected by the change in A,,, and therefore becomes more apparent at the low 
frequency end of the spectrum in figure 1 (curve B). 

Figure 2 shows the effect of changing particle concentration for a given experimental 
configuration with ro= 630 A, 8 = SO", d = 10 pm, and Adet = 0-7 cm . R was 
reduced to 3 cm in order to make the number fluctuations more apparent by decreaskg 
Acoh and further suppressing the Lorentian below that in figure 1 ( m e  B). Fora 

HZ', and estimate Acoh = 1.6 X 

10'4 . I io4 
f (Hz) 

9=50", &=lo* 
- lo1' m-' Figure 2. Effect of changing no on SI(f)/p with r0=6308.* 

Adet=0.7 an2, and R =j cm. A, no= lo9 
(N) = 5.5 x io4; C,  laser intensity fluctuation spectrum. 

and (N)=77;  B, no- 

t DOW Chemical Company. 
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valueofQ, we see from equation (8) that the relative interference fluctuations are 
G n d e n t  of no while the number fluctuations are proportional to no'. In figure 2 
(cmye B),. no estimated to be 5 X 10" an-3. At the lower frequencies, the f3 I2  
,mbr~ucmation spectrum becomes apparent. In figure 2 (curve A), the suspension 

~ diluted by a factor of 500 to give an estimated no of IO9 an-3. The number 
-tions are observed to increase by a factor of about 750 to dominate the 
mntim. A shoulder due to the Lorentzian is, however, still visible above 1 Hz. As 
+dd by equation (4), as the frequency is lowered, there is an eventual flattening of 

Hz, is in Ihespedrum. 
@sljent agreement with experiment. As noted above, if D is known (say from the 
mnbm halfwidth), the absolute magnitude of the high frequency behaviour of the 
numbr flumations can be used to measure no. Using our measured value of 
~=4.2~10-~cm's-'andequation(lO), we find that,forfigure2(curveA),SI(f)/f2= 
1.0~10-~ fi-' at 1-0 Hz and n, = 6.6 x 10' ~ m - ~ ,  where n,  is the meamred concen- 
tration. In figure 2 (curve B), S,(f)/F2= 1-3 X Hz-l at 1.0 Hz and from equation 
(io), we find n, = 4.7 x 10" Both of these values are within the limits of our 
d t d  no. The flattening of the spectra in figure 2 (curves A and B) above 1 kHz is 
&toshot noise in the photomultiplier. Using our measured values of n,, we find that 
infigure 2 curve A has (N) = 77, while curve B has (N) = 5.5 X lo4. 

For comparison, curve C shows the relative intensity spectrum for the laser used, 
measured by replacing the sample cell by ground glass. The laser was not stabilized and 
hefluctuations were due primarily to a drift in the output intensity. Such a monotonic 
drift gives an f '  spectrum with our measurement technique. The laser intensity 
finchiations were orders of magnitude below the number and interference fluctuations. 
W& an intensity stabilized laser it should be possible to see number fluctuations with 
0 much greater than 1 05. 

figure 3 shows the effect of changing ai, with ro = 630 A, 8 = 50°, Adet = 0-7 cm2, 
R=3cm, and no estimated to be lo9 ~ m - ~ .  Figure 3 (curve A) reproduces figure 2 
(me4 with d = 10 Fm. In figure 3 (curve B) the beam was defocused to give a larger 
k inaddition to decreasing the relative number fhctuations and moving the knee to a 
h e r  frequency, the increase in ai reduces Acoh and suppresses the Lorentzian. The 
Ipectrum is close to f3l2 over five decades while no definite knee or Lorentzian is 
TWent. Again, the high frequency flattening is due to photomultiplier shot noise. 
ahugh we could not make a direct measurement, the value of d in figure 3 (curve B) 
Qnhdetermined from equation (10) and the ratio of the f-3/2 regions in figure 3 
cm2 A and B). We find d = 120 p.m and predict that the knee should occur at 
Dhd = 9 X  IO-' Hz, which is below the lowest frequency measured. In figure 3 (curve 

we Perb"m a similar set of experiments on larger spheres, with ro = 6500 A, 
8=300*Ad,t= 0.7 cm2, and R = 6 cm. With a large scattering volume and a relatively 
k& pack concentration we observed the expected interference Lorentzian. The 
halrwidth was 2 H z ,  corresponding to D=2-5x109cm2s-'. The spectrum for 
d=lo MI and n, = 4.7 x lo7 cm-3 is shown in figure 3 (curve C). The knee of the 
lorenttian is still just visible; below the knee frequency, the f 3'2 behaviour due to 
Ornober Bumations is observed. The spectrum is expected to begin to flatten off at 

ties below D / r d 2  = 8 x Hz. Although the lowest few points of figure 3 
Some degree of flattening that may be the start of this knee, the lowest 

areunreliable because of a noticeable settling of the larger spheres over the 16 h 

m e  frequency below which this is expected, D / r d 2  = 1.3 X 

8) (4 = 1.1 x 104. 

of the experiment. 
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Figure 3. (Left-hand scale) effect of changing !Ii on SI(f)/l? with r0=6308L, 6=jp, 
Adet=0'7CIn2, ~ = 3  cm, no~109cm-3.~ ,d=1~~m(reprodu~sf igure2(curveA)) ;~ ,  
d c l 2 0  pm. C (right-hand scale), measured &(f) for larger spheres with r0=6500k 
8 = 30", Adet= 0.7 Cm2, R = 6 Cm. 

In the forward direction the approximation IKI >> 1/1 breaks down. As the main 
beam is detected by the photomultiplier, the heterodyne fluctuations dominate the 
spectrum. Figure 4 (curve A) shows the spectrum from an experiment in the forwyj 
direction in which the main beam is detected, with ro = 630 A, 8 = O", Ad,, = 0.7 Cm, 
R = 10 cm, and no estimated to be 5 x 10" ~ m - ~ .  If one assumes that K is exactly zero 
in the forward direction, there is no first order phase change when a particle moves, and 
we see from equation (2) that the interference terms have no finite frequencyconQ%p 
tion. One would then expect to observe only number fluctuations and a s p e m  like 
figure 2 (curve A). Although the spectrum of figure 4 (curve A), has a knee at 
it is much sharper than the knee in figure 2 (curve A), and the behaviour &+%ween 
lo-' and 10 Hz is steeper than f3". We conclude that the fluctuations are dueto 
heterodyne interference with a distribution of small K values. From the position of? 
knee at lO-'Hz, we estimate that (KI < lo3 cm-'. A rough estimate of the rW9'ofes 
included due to the finite A,,, gives IK( <4 x io3 cm-'. 

The number fluctuations are not an interference effect. It should, therefore, be 
possible to observe the number fluctuation spectrum with white or incoherent 
Figure 4 (curves B, C and D) shows the spectra obtained from several experiments? 

65OOh which the light source was a DC powered incandescent bulb. In curve B, b= 
6 = 45", Adet= 0.7 Cm2, no is estimated to be 5 x 10' and R 1 a. a 
determined by a slit 130 pm x 10 pm immediatelyin front of the sample drather'? 
by a focused beam. Although the photomultiplier shot noise is more apparent, 
no interference hrentzian and the f-3/2 number fluctuation spectrum is quite dear' 
Using equation (9), and our measured D = 2.5 x low9 cmz s-*, We dete* 
n, = 2.3 x lo9 cm-3 from the magnitude, of the f - 3 / 2  region. In curve c, rO=630$ 

6 = 50", Adet = 0.7 cm', no= 2 x 10'' ~ m - ~ ,  and R = 6 cm. The microscope Obj@ 
lens was used to focus an image of the bulb filament in the cell, and SO Produce alliof 
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Figure 4. A (right-hand smle), measured S,(f)/f2 for laser light scattered in the forward 
direction with ro = 630 A, 8 = O", Adet = 0.7 cm2, R = 10 cm, and no=5 X 10". F ,  C and D 
(left-hand scale), S , ( f ) / f z  observed with a white light source: B, ro= 6500 A, 8 = 45", 
Adet = 0.7 cm', nO=5X I!* R = 1 cm, & determined by a slit 130 p n  x 10 p n  and 
(N)= 5 x lo3; C, ro= 630A, 8 = 50°, Adct = 0.7 cm', R = 6 cm, and no=2x 10" and 
sl, determined by a focused image of the filament; D, ro = 630 A, 8 = o", Adet = 0.7 m2, 
R J 1 cm, no=2X 10" Q, determined by a slit 20 p n X 2  mm, and ( N ) = 8  X lo6. 

&gular shape for which no numerical calculations could be made. However, as 
expected, the spectrum is still proportional to f-3'2 since the dimensions of Qi 

were greater than (D/f)"2. In curve D, ro=630& 8=Oo, Adet=0.7 cm', 
W 2 X  10" and R i= 1 cm. Qi was again determined by a slit of dimensions 
2 m X 2 0  krn immediately in front of the cell. Although the f 3'2 behaviour is 
apparent, its magnitude cannot in general be used to determine n, from_equation (9) as 
it W a s  in figure 4 (curve B). Since we are observing the main beam, I Z (N)P'.  It is, 
bowever, sufficient to adopt a simple model in which I = Io exp(-Nu/a), where I is the 
transmitted intensity, Io is the incident intensity, N is the number of particles in the 
beam, 0 is the cross section for scattering out of the beam, and a is the beam area. In 
this me, $(fl/T' = [In(~o/I)]'sN(~)/(N)', and the spectrum must be scaled by 
[h(r*lI)12. Here, 10/1=2, and we find it, = 1.2 x 10" ~ m - ~ .  In figure 4 (curve D), 
(w=8X106 .  The increased intensity stability of the bulb over the laser and the 
'$ne of interference fluctuations allow one to easily observe the number fluctua- 
h'Q even when (N) > lo6 

4, Discnssion 

we haye shown experimentally that s,(f)/?' contains a number fluctuation terfn; 
qfl/N2, in addition to the usual interference terms. The determination of S N ( ~ ) / N  
Provides information about ito and also about the shape of the scattering VOhme ai. 
. 'previous measurements of intensity fluctuations the autocorrelation function was 
lnyariablY measured, presumably because of the availability of fast commercial cor- 

The use of the fast Fourier transform, however, gives a direct spectral 
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onghthe measurement the same multiplexing advantage with fewer computations. AJ& 
power spectrum and the autocrorrelation function are formally equivalent via the 
Wiener-Khintchine relations, because each is measured over a limited range it isoften 
impossible to calculate one from the other without introducing errors. nus, for 
different applications, a direct measurement of either the power s p m m  or the 
autocorrelation function may be preferable. For example, although no may be 
u e d  either from (SN(0) SN(.r)> 7 + 0 Or from &(f> as f+ a, the latter method may 
offer experimental advantages. Other noise sources contribute to (6N(O) SN(0)) a d  
may make it diflicult to identify the contribution of the number fluctuations. on the 
other hand, the f 3'2 dependence of &(f) at high frequencies offers an unmistakable 
signature of number fluctuations, even when fi is as high as lo6. Moreover, s,(fl, 
rather than the autocorrelation function, reflects the shape of ai in a straightforwad 
way. 
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Appendix 

We wish to calculate the positive frequency spectrum of the intensity fluctuations, which 
is given by the cosine transform of the autocorrelation function 

Sdf> = 4 I, (1(0)1(7)) cos(2?rf.) d7. 
m 

The calculation of (1(0)1(7)) involves the average of the product of four terms similar to 
equation (l), two at t = 0, and two at t = 7. Because of our assumption that BIC=O," 
terms of the form (B(r)  cos(K. r ) )  vanish. Since each particle is independent, t m ~  
containing more than one index factor into the product of averages for each index. 
Thus, for example, 
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F*(K, T )  = a-’ k d3r I, d3r’B(r)B(rf) eiK(r*r’)P(r, 0 I r’, 7). 64.3) 

qr,ol+, 7) d3r‘ is the probability that a particle at r at t = 0 will be in d3r’ about r r  at iZ7, and in the usual diffusion approximation (Chandrasekhar 1943) is given by 
P(r, o I r‘, T )  = ( ~ T O T ) - ~ ’ ~  exp[-(r’- r ) 2 / 4 ~ T ~ .  (A.4) 

It remains to evaluate F d K ,  7). By introducing s = r’-r  in equation (A.3), and 
wg spatid transforms, we find 

using the approximation BK = 0, we use equation (AS) in equation (A.2) to find 

( I ( o ) I ( ~ ) )  = constant + 2(8 . E , ) ~ ( N )  

where (SN(0) SN(T)) = MF-(O, 7) is the autocorrelation function for number fluctua- 
hnsinQ due to diffusion of the particles. E ( 0 ,  T) is the probability that a particle in ai 
at t = O  will also be in ai at t = T. 1 -F-(O, T )  is the probability after-effect factor of 
(kandrasekhar (1943). 

The cosine transform of equation (A.6) gives the frequency spectrum. Apart from 
zero-frequency components, we find 

p4(w2 e-2DKzr+ p4(slv(0) SN(T))  
(A.6) 

whereS,(f) is given by equation (3). The first and second terms are the heterodyne and 
hodyne Lorentzians (Cummins and Swinney 1970). The heterodyne term vanishes 
~ E o + O ,  and by dividing the remaining terms of equation (A.7) by I=p2(N>, we 
obtain equation (2). 
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