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Number fluctuation spectra from light scattered by particles in
Brownian motion

Richard F Vosst and John Clarke

Department of Physics, University of California and Inorganic Materials Research Divi-
sion, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA

Received 12 August 1975, in final form 3 November 1975

Abstract. We show that the spectrum of intensity fluctuations of monochromatic light
scattered by a suspension of particles undergoing Brownian motion contains a contribution,
Sx(f), due to fluctuations in the number of illuminated- particles in addition to the
interference terms. Limiting forms of Sn(f) are given for a regular three-dimensional
illuminated volume €. For an {); with sharp boundaries Sn(f) > AngD'/ 22 2_f3/ 2 for
f»D/%, where [ is the smallest dimension of &, D is the diffusion constant, o is the
particle number density, and A is the surface area through which particles may enter or
_ leave £;. We have measured the intensity fluctuation spectra of laser light scattered by
suspensions of polystyrene spheres in water from 5x 10" Hz to 5x10° Hz. The spectra
clearly show the usual homodyne Lorentzian superimposed upon Sx(f). The effects of
varying D, ny, (), and detector area on the spectra were in excellent agreement with theory.
The measured f~ 3/2 Jimit of Sx(f) together with D (from the Lorentzian halfwidth) and our
- known (}; enabled us to determine a value for ny. Sn(f) was also measured with a white light
source.

L Introdunction

.Tne intensity fluctuations of monochromatic coherent light scattered by a suspension of
ﬂfdep;ndent particles undergoing Brownian motion have been used to measure the
dlﬁpsxon constant, D, of the particles (see Cummins and Swinney 1970 for an extensive
'e‘"?W). Similar methods have also been used to gain information about the motion of
:n:u}e organisms (Schaefer et al 1974). Two closely related experimental techniques
Ve l?een developed, namely heterodyne and homodyne detection. In the heterodyne
e"_Pe*‘mlffﬂt,.ﬁrst performed by Cummins et al (1964), light scattered by the particles is
ml:i:d with hght of constant phase from the same source, which acts as a local oscillator.
indeffefence octween the constant phase component and the light scattered by each
rggﬂdmt Partlc_le gives rise to intensity fluctuations. The heterodyne spectrum is,
1€, proportional to (N), the average number of illuminated particles. In the
Wtery:e experiment,v first performed by Ford and Benedek (1965), only light
ed from the particles is detected. The intensity fluctuations arise from interfer-
r‘Wtehen the ]ight.scattered by pairs of particles: as one particle moves relative to

ti,On € phase filﬁerence of their electric fields at the detector varies. The

vy Spectrum is thus proportional to the number of pairs of illuminated particles,

sy )
#dress: IBM Laboratories, Yorktown Heights, NY 10598, USA.
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562 R F Voss and J Clarke

Both of these interference effects depend on the coherent nature of the ingi
light. The heterodyne and homodyne experiments may be considered as ap elde!'lt
scattering of light from wavevector k to k' by ng, a density fluctuation of wavey, .
K=k'—k. The autocorrelation function for the intensity then depends on the av:qq
manner in which ng decays in time. For independent particies undergoing Bro i
motion (Sng())=(dnx(0)) exp(~DK?7). The fluctuations are thus correlated :;man
time 7.~1/DK’. By measuring 7. or the shape of the spectrum § ol
7o/[1+(277f)’], one is able to determine D. e

More recently, Schaefer and Berne (1972) studied suspensions of polystyrene
spheres in water when the average number of particles, {N), in the illuminated volume,
(;, was very small. In this limit, the relative fluctuations in the number of particles
become significant, and introduce additional intensity fluctuations in the scattered light
These additional fluctuations are not an interference effect but arise because the
intensity of the scattered light is sensitive to the number of particles in ;. Number
fluctuations have also been observed by the fluorescence of individual particles (Eison
and Magde 1974, Magde et al 1974). The correlation time for the number fluctuations
is of the order /*/ D, where [ is the smallest dimension of Q,, and is usually much greater
than 1/DK? ‘Schaefer and Berne showed that the number fluctuations may be
observed as a slowly varying excess background in the homodyne autocorrelation
function. They were able to subtract out the contribution of the number fluctuations,
and thus recover the usual homodyne autocorrelation function. The statistics of the
non-Gaussian ‘scattered light were discussed by Schaefer and Pusey (1972) and by
Pusey et al (1974). From these measurements, one is able to deduce a value for the
particle number density, n,.

In this paper we present an alternative approach to the problem. First, we derive the
intensity fluctuation spectrum for the scattered light. In addition to the homodyne and
heterodyne terms, the spectrum contains a number fluctuation term, Sy(f). The
calculation of the spectrum is independent of the statistics. In the high frequency limit
(f» D/ %) for an illuminated volume with surface area A and with sharp boundaries, we
find Sx(f) = noD'?A/27*f*%. Therefore, a measurement of the high frequency limit
of Sx(f) allows one to determine n, if A and D are known.

Second, we describe a series of homodyne experiments in which laser light wes
scattered by a suspension of polystyrene spheres in water. The spectra of the intensity
fluctuations of the scattered light were measured from 5x 107 Hz to 5x 10° Hz. The
spectra show clearly both the homodyne Lorentzian and Sx(f). In most cases, the two
spectra can easily be separated. Spectra were also obtained with a white light source: 18
this case, the interference Lorentzian was absent, and only Sx(f) was observed. .
technique provides an extremely sensitive method for detecting number fluctuations.
The fiuctuations were readily observable when (N} = 5-5 x 10* for an unstabilized laser
and {N)=8x10° for an incandescent bulb. The observed spectra are in excellent
quantitative agreement with the theoretical predictions. To our knowledge, fh&;
observations represent the first detailed experimental confirmation of the theory
number fluctuations in diffusive systems by a direct measurement of the spectr2-

2. Theory

i 2
Light of wavevector k illuminates a small subvolume (; of a cell of total volum®

containing a suspension of M = ne{} particles (where M » 1) undergoing 5%
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gotion. We assume that each of the particles is independent, and that ) is large enough
that we maY neglect effects due to its boundaries. Each of the illuminated particles
atters the light elastically with a phase that varies in time due to the motion of the

- Jes. We are interested in the intensity fluctuation spectrum for light scattered with
smavevector k' into a detector of area Ag.,. Initially, we assume that the light is coherent
over the area of the detector. The electric field is of the form

E(t) = E, exp(—iwet) +B g B(r;) exp(—iwet) exp(iK. r;). ' ¢}

E, s the constant phase heterodyne component, and K = k' —k is the scattering vector.
Bir)=1ifr;isin Q;, while B(r,) = 0 otherwise. 87 is proportional to the intensity of the
t scattered by a single particle as measured by the detector. The intensity of the
scattered light is I(2) = E(1) . E*(2).
We assume further that |K|> ™}, where [ is the smallest dimension of ;. This
assumption is equivalent to setting Bx =0, where

B, 5(271’)—1/2 j B(r)exp(ig.r) d&’r.
(9)

The positive frequency spectrum of the intensity fluctuations can then be calculated in a
smaightforward way: this calculation is sketched in the Appendix. For a homodyne
experiment for which E,— 0, the relative spectrum is

S()____8DK* ___ Su(f)

TZ —4D2K4+(27Tf)2 <N>2 (2)
where
_ IB,’q> d°q
SN(f)“4"oDJ D2q4+(277f)2’ (3)

I's the average intensity, and (N)=n,{. The first term on the right-hand side of
gquation (2) is the homodyne Lorentzian (Cummins and Swinney 1970). Sy(f) arises
Iomthe number fluctuations (van der Ziel 1954, see also van Vliet and Fasset 1965 for
¢comprehensive review).

Whereas the homodyne Lorentzian depends on the coherent nature of the light,
§{f), which is independent of K, does not depend on coherence but rather on the shape
of E){cept for a few special cases, it is impossible to give an analytic expression for

N f)-.lt is, however, possible to determine its general behaviour. For a regular volume
"_ﬂi_ldlmensions I, =1,=1,, there are three characteristic frequencies, f; = D/ #l?, that
de the spectrum into four regions:

Sn(f) e constant for f« fy,

Sx(f)<cIn(1/f) for fi<f<f,, (4)
Sn(fHecf2/? for o« f« fs,

Sx(fyocF3/2 for f> fs.

°haTaCten'st'ic frequencies correspond to the times 7; required for a particle to
(ff 41055 () in the different directions: f; ' o 7, I2/D. At high enough frequencies
¥ Particles do not have enough time to diffuse across (), in any direction, and the
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fluctuations are insensitive to the exact shape of {;. Changes in the number of parti
in Q; then arise only from local one-dimensional diffusion across each surface elemen
Since each surface element is independent, Sx(f) is proportional to A, the tota] Surfact
area through which particles may enter or leave ();:
< B! 2.2 d

(>4 | AL (op) 5
B'(x) is the shape of the boundary of (), in a direction normal to the Surfacé. B! isthe
one-dimensional spatial Fourier transform of B'(x). For a sharp boundary, B’((]x)=1
for x=<0 and B'(x) =0 otherwise. Thus |B}|>=1/2m7¢* and

2n,DA dg n,D'?A
D2q4+(2n1)2= 21’r3/2f3/2

- The f~*'* behaviour is therefore a consequence of particle flow across a sharp
boundary. If, instead, the boundary has a finite width, w (for example, B'(x)=1for
x<0and B'(x)=e™" for x>0), we find

Sn(fyocngDA/wf?, for f» D/ mw?. ()

The constant of proportionality depends on the explicit shape of the boundary.

- Although we initially assumed that the scattered light was coherent over the area of
the detector, A, this assumption is usually not valid experimentally. In most casesthe
coherence area at the detector, A, is less than Ag.,. Cummins and Swinney (1970)
show that A, =A’R?/A’, where A is the wavelength of the light, R is the distance from
€); to the detector, and A’ is the apparent area of (; as seen by the detector. An
additional factor-A /A4 is introduced into the relative spectrum of the interference
terms. Since each A ., may be considered as fluctuating independently, the relative
spectrum is. reduced by the number of these independent areas Age/Ach M/
however, is unaffected since it is not an interference effect. The relative intensity

spectrum then becomes

Si(f) _ 8DK*Agon/Aser, 4D f |B,l’q’ &g o
I’ 4DK*+Q2nf)  neO?) D2¢*+(2mp*

The position of the halfwidth of the Lorentzian, f, , = DK*/, allows one to determ;nf
the diffusion constant, D. The low frequency limit of the Lorentzian, 2A o0/ AaezD_K z
2A on/ Tf1/2A ger» then allows one to determine A, if A, is known. The Lorentzianis
expected to be on top of a ‘background’ spectrum due to number fluctuations. Forsn@
enough €); or ng, the number fluctuations may dominate the Lorentzian. The bi
frequency limit of the relative number fluctuations from equation (6)

S{N/ P> DA/ w2 (f»f3)

Su(f)~> (f>f;). 0]

v

i

allows one to determine n, if D, A and €); are known.

3. Experiment

oL . ;ameter
In our experiment, light from a helium-neon laser (A = 6328 A) with a bea® $:‘d“;ya
of 1-7 mm passed through a small aperture of diameter 0-45 mm, anc! was focl ystyrese
microscope objective lens on to a thin closed cell containing a suspension of po
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res in distilled water. Light scattered through an angle 6 passed through an

.4ure of area Age: at a distance R from the cell and was incident on a photomultiplier
3.cm behind the aperture. The cell windows were carefully cleaned to minimize stray
- oht that would generate a heterodyne component. We estimate that the heterodyne
contribution to the Lorentzian was at most 5%. The photomultiplier output was
amplified, digitized at a rate fo (points s™'), and interfaced to a PDP-11 computer. The
computer used a fast Fourier transform algorithm to measure the fluctuation spectrum
i the range fo/1024 to fo/2. By taking successive runs with different values of f,, we
were able to determine the spectrum from 5x107*Hz to 5x10°Hz. The high
frequency limit was set by the digitizing electronics while the low frequency limit was set
by the experimenters’ patience, and possible settling effects of the particles. Each

was averaged over at least 30 times the longest period. Thus, for example, the
time taken to obtain a spectrum whose lowest frequency was 5x 10~ Hz was about
17h. '

Our arrangement of passing the laser light through an aperture.and focusing it on to
the sample cell produced an illuminated cylindrical volume, (), of length I, =15 mm
with sharp boundaries and illumination uniform to within 10%. The diameter of the
cylinder d could be varied by changing the beam focus. The minimum beam diameter
was 102 pm. Since the particles could not cross the ends of the cylinder, we expect
the shape of the number fluctuation spectrum, Sx(f), to be given by equation (4) with
fi>0,and f,=f;~D/wd*. Thus, Sx(f) should be proportional to f /> for f= D/wd?,
and flatten as f is lowered below D/ wd®. From equation (9) for a cylindrical (; the high
frequency limit of the number fluctuation contribution is

S{H/T*>8DY? 7™ nod’l,f*/ (F>f). (10)

Figure 1shows S,(f)/I*for a homodyne experiment on spheres of radius r, =630 A
with §=50°, d=10um, R=4cm, and n,=5x10" cm™>. The value of no was

L 1 T T 1 B 1
L 1
- 4
- -
TN L d
z
INN 107 '--A“”"‘—‘—:»..,._\A 4
3 .
S L o ]
. e, A
wooL T
- -.'~.=B ~
108 -
| 5 i 1 1 . L
1074 ! 10°
f(Hz)

Figure 1. Effect of changing A, on Sy(f)/I* for light scattered from a suspension of
polystyrene spheres with ro =630 A, 8 = 50°, d = 10 pm, R =4 cm and no~5x 10'* cm™
A, Ager=0-009 cm?; B, Agee=0-7 cm’.
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estimated from information supplied by the manufacturer? of the polystyrene spheres
and our known dilution. Because of settling of the particles and evaporation of the
solvent, the value of n, is accurate only to within a factor of 2. In figure 1 (curve A)
Age.=0-009 cm®, and the spectrum is the usual homodyne Lorentzian, From the
position of the halfwidth, f,/, = DK?/, we may measure D. Here K = 47m sin(g’ 1)
where n is the index of refraction of the solvent, A is the vacuum wavelength of the light,
and @' is the angle through which the light is scattered in the suspension, Using Snelfs
law to correct for refraction at the water—glass-air interface, we find that 9=
_corresponds to ' =37-2° inside the cell. Using the value of f, , =85 Hz from figure |
(curve A), we find D =4-2x10"° cm®s™. This is in reasonable agreement with the
value of D =3-73x107® cm® s~ calculated from the Einstein-Stokes relation (Einsteiy
1956) D = kg T/671r,, at room temperature. The major error in the measurement of b
probably arose from the uncertainty in our estimate of 6.
In figure 1 (curve B), A, was increased by a factor of 77 to 0-7 cm®. The iow
* frequency limit of the Lorentzian was reduced by a factor of 65, demonstrating the
effect of Aop/Age: in determining the absolute magnitude of the homodyne interfer-
ence spectrum. From the low frequency limit, we find 2A.,/A.DK’=
17x107Hz™", and estimate A.,=16X107*cm’ at the aperture. The empirica
formula A_;,~A2R?*/A’ yields a value of 7-0x 107 cm®. (A’ was corrected for the
effect of the water—glass—air interface.) The number fluctuation coatribution i
unaffected by the change in A, and therefore becomes more apparent at the low
frequency end of the spectrum in figure 1 (curve B).

Figure 2 shows the effect of changing particle concentration for a given exgerimental
configuration with ro=630 A, 6=50°, d=10pm, and A=07cm’. R wa
reduced to 3 cm in order to make the number fluctuations more apparent by decreasing
Acon and further suppressing the Lorentzian below that in figure 1 (curve B). Fora

-2

ST "tz

f(Hz)

= =10pm
Figure 2. Effect of changing no on S(f)/I* with ro=630 &, §=5C bttxianJ"‘d
Ager=07em? and R=3cm. A, np~10°cm™ and (\)=77; B, ng=3x1

(N) =5-5x10% C, laser intensity fluctuation spectrum.

F Dow Chemical Company.
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. value of (&, we see from equation (8) that the relative interference fluctuations are
2. ~endent of no while the number fluctuations are proportional to ng !, In figure 2
arve B), Mo is estimated to be 5 10" cm™. At the lower frequencies, the f>/2
qumber fictuation spectrum becomes apparent. In figure 2 (curve A), the suspension
s diluted by a factor of 500 to give an estimated n, of 10°cm™. The number
fipctuations. are observed to increase by a factor of about 750 to dominate the
Lorentzian. A shoulder due to the Lorentzian is, however, still visible above 1 Hz. As
.«ed by equation (4), as the frequency is lowered, there is an eventual flattening of
Fedlded yeq
thespectrum. The frequency below which this is expected, D/ 7wd*>=1-3X 107 Hz,is in
excellent agreement with experiment. As noted above, if D is known (say from the
Lorentzian halfwidth), the absolute magnitude of the high frequency behaviour of the
r fluctuations can be used to measure n,. Using our measured value of
pumbe! ; ‘
p=42x10"% cm’® s~ and equation (10), we find that, for figure 2 (curve A), Sy(f)/I*=
19x10 Hz " at 1-0 Hz and n,, = 6-6 X 10° cm ™, where n,, is the measured concen-
mtion. In figure 2 (curve B), Sy(f)/I°=1-3x10"°Hz ™" at 1-0 Hz and from equation
(16), we find n,,=4-7x 10" cm™. Both of these values are within the limits of our
wtimated np. The flattening of the spectra in figure 2 (curves A and B) above 1 kHz is
due toshot noise in the photomultiplier. Using our measured values of n,,, we find that
infigure 2 curve A has (N) =77, while curve B has (N)=5-5x 10"

For comparison, curve C shows the relative intensity spectrum for the laser used,
measured by replacing the sample cell by ground glass. The laser was not stabilized and
the fiuctuations were due primarily to a drift in the output intensity. Such a monotonic
drift gives an f> spectrum with our measurement technique. The laser intensity
firetmations were orders of magnitude below the number and interference fluctuations.
With an intensity stabilized laser it should be possible to see number fluctuations with
(N) much greater than 10°. : ,

Figure 3 shows the effect of changing €, with r, =630 A, 6=50°, A4, =0-7 cm’,
R=3cm, and n, estimated to be 10° cm™. Figure 3 (curve A) reproduces figure 2
(eurve A) with d = 10 wm. In figure 3 (curve B) the beam was defocused to give a larger
. naddition to decreasing the relative number fluctuations and moving the knee toa
lower frequency, the increase in €); reduces A, and suppresses the Lorentzian. The
spectrum is close to f~ 32 over five decades while no definite knee or Lorentzian is
dpparent. Again, the high frequency flattening is due to photomultiplier shot noise.
Although we could not make a direct measurement, the value of d in figure 3 (curve B)
an be determined from equation (10) and the ratio of the f~? regions in figure 3
g\m’eg A and B). We find d =120 wm and predict that the knee should occur at
B)/ Z;g) =19>1< l(i;;Hz, which is below the lowest frequency measured. In figure 3 (curve

=1 x A

§We performed a similar set of experiments on larger spheres, with r,=6500 A,
=30, Adez =0-7 cm®, and R =6 cm. With a large scattering volume and a relatively
Particle concentration we observed the expected interference Lorentzian. The
=10dth was 2Hz, corresponding to D =2-5x10°cm®s™. The spectrum for
ent,nl'm and np, =4-7x10” cm ™ is shown in figure 3 (curve C), The knee of the
an is stx.ll Just visible; below the knee frequency, the f~ 3/2 behaviour due to
T ?“Ctuatlons is observed. The spectrim is expected to begin to flatten off at
— Ges below D/7d®=8x107* Hz. Although the lowest few points of figure 3
o ) Show some degree of flattening that may be the start of this knee, the lowest
; s:;;“;lrtillable because of a noticeable settling of the larger spheres over the 16 h

“+Al 01 the experiment.
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Figure 3. (Left-hand scale) effect of changing Q; on Sy(f)/T? with ro=6304, g=5¢,
Ager=0-7 em®, R =3 cm, no=~10°cm™. A, d = 10 jum (reproduces figure 2 (curve AJ} B,
d=120pm. C (right-hand scale), measured S;(f) I for larger spheres with r,=65004,
8=30° Agee=0-7cm?, R=6cm. :

In the forward direction the approximation |K|> 1/] breaks down. As the main
beam is detected by the photomultiplier, the heterodyne fluctuations dominate the
spectrum. Figure 4 (curve A) shows the spectrum from an experiment in the forward
direction in which the main beam is detected, with 7, =630 A, §=0°, A, =07}
R-=10cm, and n, estimated to be 5x 10 cm ™. If one assumes that K is exactly zro
in the forward direction, there is no first order phase change when a particle moves, and
we see from equation (2) that the interference terms have no finite frequency contrit_m-
tion. One would then expect to observe only number fluctuations and a spectrum like
figure 2 (curve A). Although the spectrum of figure 4 (curve A), has a knee at 107 Bz
it is much sharper than'the knee in figure 2 (curve A), and the behaviour betwees
107 Hz and 10 Hz is steeper than f~*>. We conclude that the fluctuations are due 0
heterodyne interference with a distribution of small K values. From the position oftb’e
knee at 107 Hz, we estimate that |K|< 10° cm™. A rough estimate of the rangeof fs
included due to the finite A, gives |[K|<4x10% cm™.

The number fluctuations are not an interference effect. It should, therefore, be
possible to observe the number fluctuation spectrum with white or i‘ncoherfant hgh}
Figure 4 (curves B, C and D) shows the spectra obtained from several experiments fiﬂ
which the light source was a bc powered incandescent bulb. In curve B, 1p=6300
6=45°, Ay, =0-7cm? n, is estimated to be 5x10°cm™> and R=1cm. Qitlvl’:;
determined by aslit 130 um X 10.um immediately in front of the sample cell rather A
by afocused beam. Although the photomultiplier shot noise is more aPP?fe“t,’ th:;;
no interference Lorentzian and the f~*/? number fluctuation spectrum is qultemme'
Using equation (9), and our measured D=2-5x10"°cm’s™’, We ditgsoix
Nnm=2-3x10° cm™ from the magnitude of the f~*2 region. In curve C, ’O'b. :
6=50°, Aye;=0-7 cm’, np=2x10" em™, and R =6 cm. The microscope 00! oo
lens was used to focus an image of the bulb filament in the cell, and so produce
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Figure 4. A (right-hand scale), measured Si(f)/ T2 for laser light scatteréd in the forward
direction with ro=630 A, 8= 0°, Age, = 0-7 cm®, R =10 ¢m, and np=5x10"". B,Cand D
(left-hand scale), Si(f)/I? observed with a white light source: B, ry=6500 A, 8=45°,
Agee=0-7 cm?, ng=5x10% em™, R =1 cm, {; determined by a slit 130 um X 10 um and
(NY=5%10%C,7,=630 A, 6= 50°, Agee =0-7 cm® R =6 cm,and ng~2x10"' em™, and
Q; determined by a focused image of the filament; D, ro =630 A, 0=0° Ag=0-7cm’,
R~1cm, ng~2x 10" cm™>, ©; determined by a slit 20 um x2 mm, and (N) = 8 x 10°.

imegular shape for which no numerical calculations could be made. However, as
expected, the spectrum is still proportional to F7*/* since the dimensions of &
wre greater than (D/f)2. In curve D, r,=6304, 0=0°% Au=0-7cm’
1~2x10" em™>, and R~1cm. (; was again determined by a slit of dimensions
2mmx20 pm immediately in front of the cell. Although the f~ %% behaviour is
dpparent, its magnitude cannot in general be used to determine n,, from equation (9) as
Itwas in figure 4 (curve B). Since we are observing the main beam, T#(N)B2. Ttis,
bowever, sufficient to adopt a simple model in which I = I, exp(—No/«), where I is the
Tansmitted intensity, I, is the incident intensity, N is the number of particles in the
be.am, o is the cross section for scattering out of the beam, and « is the beam area. In
tis case, S{(f)/T?=[In(I,/DPSn(f)/{N)’, and the spectrum must be scaled by
/. Here, I,/I~2, and we find n=1-2x10" cm™>. In figure 4 (curve D),
M)=8x10°. The increased intensity stability of the bulb over the laser and the
{bsence of interference fluctuations allow one to easily observe the number fluctua-
tions, even when (N> 10°

4 Discussion

Ve hav_e2 shown experimentally that S;(f)/I” contains a number fluctuation term,
_/ N »in addition to the usual interference terms. The determination of Sx( f/N?
rovides information about n, and also about the shape of the scattering volume ;.
iﬂvmfélemus measurements of intensity fluctuations the autocorrelation funct@on,was

Yy measured, presumably because of the availability of fast commercial cor-

Telat . . .
oS, The use of the fast Fourier transform, however, gives a direct spectral
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measurement the same multiplexing advantage with fewer computations, Although the
power spectrum and the autocrorrelation function are formally equivalent vi the
Wiener-Khintchine relations, because each is measured over a limited range it is often
impossible to calculate one from the other without introducing errors. Thus, for
different applications, a direct measurement of either the power spectrum o; the
autocorrelation function may be preferable. For example, although n, may be meas.
ured either from (8N (0) 8N(7)) as 7> 0 or from Sx(f) as f - 0, the latter method may
offer experimental advantages. Other noise sources contribute to (SN(0) 8N(0)) and
may make it difficult to identify the contribution of the number fluctuations. On the
‘other hand, the f*/? dependence of Sx(f) at high frequencies offers an unmistakable
signature of number fluctuations, even when N is as high as 10°. Moreover, Sxih,
rather than the autocorrelation function, reflects the shape of £); in a straightforward

way.
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Appendix

We wish to calculate the positive frequency spectrum of the intensity fluctuations, which
is given by the cosine transform of the autocorrelation function

‘ Sl(ﬁ=4L (I(0)I(7)) cos(2afr) dr.

The calculation of (I(0)I(7)) involves the average of the product of four terms similar to
equation (1), two at ¢ =0, and two at t = 7. Because of our assumption that By =0, cross
terms of the form (B(r) cos(K . r)) vanish. Since each particle is independent, terms
containing more than one index factor into the product of averages for each index.
Thus, for example,

. . . forj#k,
(B(r)B(r,) %) =(B(r) ="} B(r,) e~ = {?B> _a/0 ok

Hence
(HO)I(r)) = E§ +2B8°EXN)+4(B . Eo)* Y. (B(r;)B(r,) cos(K. r;) cos(K. )
ji
+8* T (B(r)B(r)B(r)B(r,,) < ), (a0

jkim

where (N) = M(;/Q. The indices j and k refer to ¢t =0, while / and m referto =" 3;:
third term in equation (A.1) is non-zero only for j = [, while the fourth term is no-2

only when each index is equal to at least one other index. After some
equatiqn (A.1) can be put in the form, for M »1:

(H(O)I(r)) = B4+ 28°EXN)+ 2(B . Eo) M(F.(K.-7) + F_(K, 7))+ B*MF-(0: ")
+ BNy’ + B*M*(FK, 7)+ F*(K, 7))
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F.(K, 7)=Q_II d%f d3r'B(r)B(r’) e&=p(r, 0|1, 7). (A.3)
(1] Q

o7, 0}, 7) &°r' is the probability that a particle at r at £ =0 will be in d’r' about r' at
;=;—, and in the usual diffusion approximation (Chandrasekhar 1943) is given by

P(r,0|¢', 7)=(4mD7)"** exp[~(r'~r)*/4Dr]. . (A4

It remains to evaluate F.(K, 7). By introducing s =r'—r in equation (A.3), and
taking spatial transforms, we find

FuK7) =07 | gBL B uicare ™5™ (A3)

Using the approximation Bg =0, we use equation (A.5) in equation (A.2) to find

(101(s)) = constant + 2(8 . Eg)(N) €™>%*"+ B*(N)? e 2P+ BBN(0) SN(r) (' '
A.6)

where (8N(0) N(7)) = MF_(0, 7) is the autocorrelation function for number fluctua-
tions in £, due to diffusion of the particles. F_{0, )isthe probability that a particle in {;
att=0will also be in ); at t=71. 1—F_(0, 7) is the probability after-effect factor of
Chandrasekhar (1943). '

The cosine transform of equation (A.6) gives the frequency spectrum. Apart from
zrodrequency components, we find

8(B . Eo)’(N)DK” + 88Ny’ DK*
D*K*+Q2=f)*  4D*K*+(Q2nf)’

where Sx(f) is given by equation (3). The first and second terms are the heterodyne and

tomodyne Lorentzians (Cummins and Swinney 1970). The heterodyne term vanishes

& Ey»0, and by dividing the remaining terms of equation (A.7) by I =B%N), we
obtain equation (2).

S(f= +B*Sn(f) (A7)
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